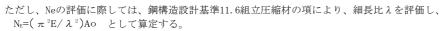
8-4 リップ溝形鋼トラスの終局耐力

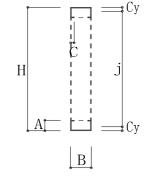
(1) リップ溝形鋼トラス (ラチス材:丸鋼) の終局耐力

圧縮と曲げを受けるトラス部材の曲げ耐力は次式による。

$$Mm = \left(1 - \frac{N}{Nc}\right) Mc$$
 (3. 2. 1)

ここで、Nc:トラス部材の圧縮耐力は、(3.2.3)式によって算定する。


1) トラス部材の圧縮耐力: Ncの算定


 $\lambda c \leq p \lambda c$ Nc=Ny

 $p \ \lambda \ c < \lambda \ c \leq e \ \lambda \ c \qquad \text{Nc} = \left[1.07 \text{--}0.44 \sqrt{\frac{\text{Ny}}{\text{Ne}}} \ \right] \ \cdot \ \text{Ny}$ (3.2.3)

e λ c $< \lambda$ c Nc \rightleftharpoons 0.83 • Ne

Ny=Fy • Ao

リップ溝形鋼トラス	T4 C3端	T4 C3端	T4 C3端	T4 C3端	T4 C3端	単位
部材No.	5	5	5	5	5	
トラス弦材: C-	100/100/1	$100 \times 50 \times$		$100\!\times\!50\!\times\!$	$100 \times 50 \times$	
	20×3.2	20×3.2	20×3.2	20×3.2	20×3.2	
N : 長期軸力	0.00	0.00	0.00	0.00	0.00	[kN]
E:ヤング係数	205000	205000	205000	205000	205000	[N/mm2]
Fy : 降伏強度	258	258	258	258	258	[N/mm2]
Fu :最大引張耐力	400	400	400	400	400	[N/mm2]
A :リップ溝形鋼の高さ	50	50	50	50	50	[mm]
B :リップ溝形鋼の幅	100	100	100	100	100	[mm]
C :リップ溝形鋼のリップ長さ	20	20	20	20	20	[mm]
t :リップ溝形鋼の板厚	3. 2	3. 2	3. 2	3. 2	3. 2	[mm]
Cy : 単一材重心	1.86	1.86	1.86	1.86	1.86	[cm]
Ao : 単一材断面積	7.01	7.01	7.01	7.01	7. 01	[cm2]
Ixo : 単一材 X 軸断面二次モーメント	107.00	107.00	107.00	107.00	107.00	[cm4]
Iyo :単一材Y軸断面二次モーメント	24. 50	24.50	24. 50	24.50	24. 50	[cm4]
H :組立材部材成	60.0	60.0	60.0	60.0	60.0	[cm]
j : 弦材の図心間距離 H-2×Cy=	56. 3	56. 3	56. 3	56. 3	56.3	[cm]
j/2 : 単一材図心位置	28. 1	28. 1	28. 1	28. 1	28. 1	[cm]
Ag :組立材断面積	14.01	14.01	14.01	14.01	14. 01	[cm2]
Ix :組立材X軸断面二次モーメント	11146	11146	11146	11146	11146	[cm4]
Iy :組立材Y軸断面二次モーメント	214	214	214	214	214	[cm4]

a) 組立圧縮材の充腹軸についての細長比の算定は、単一材の規定による。

構面内座屈 (組立材)

	T4 C3端	単位				
Lkxc : 構面内全体座屈長さ	290. 0	290. 0	290. 0	290. 0	290. 0	[cm]
ixrc : 座屈軸についての断面二次半径	28. 20	28. 20	28. 20	28. 20	28. 20	[cm]
λxc :素材を一体としたときの構面内細長比	10	10	10	10	10	

構面内座屈 (単一材)

	T4 C3端	単位				
Lkxo : 構面内単一材座屈長さ	60.0	60.0	60.0	60.0	60.0	[cm]
ixro : 座屈軸についての断面二次半径	1.87	1.87	1.87	1.87	1.87	[cm]
λ xo :素材の構面内細長比	32	32	32	32	32	

b) 組立圧縮材の充腹でない軸についての座屈に対しては、単一材の細長比を割り増しして算定する 構面外座屈(単一材)

再回77座周(毕 初)							
		T4 C3端	単位				
Lkyo : 構面外単一材座屈長さ		290.0	290. 0	290.0	290. 0	290. 0	[cm]
iyro :座屈軸についての断	面二次半径	3. 91	3.91	3. 91	3. 91	3. 91	[cm]
λyo :素材の構面外細長比		74	74	74	74	74	
これより、	λ=max(λxc, λxo, λyo)=	74	74	74	74	74	
弾性座屈耐力は Ne=(π²E/λ²)Ao=		258.9	258. 9	258.9	258. 9	258. 9	[kN]
Ny:降伏軸力=Fy・Ao=		180.8	180.8	180.8	180.8	180.8	[kN]
	$\lambda_{\rm c} = \sqrt{N_y/N_e} =$	0.836	0.836	0.836	0.836	0.836	
Nc :トラス部材の圧縮耐	カ Nc=	127.0	127.0	127.0	127.0	127.0	[kN]
λιοの範囲	Ncの算定式	Ncの値	Ncの値	Ncの値	Ncの値	Ncの値	
λ c≦0. 15	Ny	180.8	180.8	180.8	180.8	180.8	[kN]
0. 15< λ c ≤ 1. 29	(1.07-0.44 λ c) Ny	127.0	127.0	127.0	127.0	127.0	[kN]
1. 29< λ c	0.83Ne	214. 9	214. 9	214.9	214. 9	214. 9	[kN]

2) トラス梁の曲げ耐力: Mcの算定 (3.2.3)式によって算定するが、Neの評価における座屈長さは、構面内については節点間距離、構面外については横補剛間距離とする。

	T4 C3端	単位				
j : 弦材の図心間距離	56. 28	56. 28	56. 28	56. 28	56. 28	[cm]
Pc : 圧縮側弦材の圧縮耐力	127.0	127.0	127.0	127.0	127.0	[kN]
α :接合係数	1.2	1. 2	1.2	1.2	1.2	
Pu : 引張側弦材に含まれる接合部の最大引張耐力						
Pu=min(Pu1, Pu2, Pu3) =	280.3	280. 3	280.3	280. 3	280. 3	[kN]
Pu1 : 母材で決まる耐力 Pu1=Fu・Ao=	280.3	280. 3	280.3	280. 3	280.3	[kN]
Pu2 : ボルトで決まる耐力 Pu2=	500.0	500.0	500.0	500.0	500.0	[kN]
Pu3 : 溶接で決まる耐力 Pu3=	400.0	400.0	400.0	400.0	400.0	[kN]
$Mc=j \cdot min \left(Pc, \frac{Pu}{\alpha}\right) =$	71.5	71.5	71. 5	71.5	71.5	[kN·m]
$Mm = \left(1 - \frac{N}{Nc}\right)Mc =$	71. 5	71.5	71. 5	71. 5	71. 5	[kN·m]

3) トラス部材のせん断耐力: Qmの算定

$$Qm=\sin\boldsymbol{\theta}\cdot\min\left(\text{Plc},\frac{\text{Plu}}{\boldsymbol{\alpha}}\right) \tag{3.2.17a}, (3.2.17b)$$

Plc: ラチス材の圧縮耐力で(3.2.18)式を用いるが、Peの評価に当たって、座屈長さは構面内・ 構面外とも節点間距離とする。

$$\begin{array}{lll} \lambda \, \operatorname{Lc} \leq p \, \lambda \, \operatorname{Lc} & \operatorname{PLc} = \operatorname{Py} \\ \\ p L \, \lambda \, \operatorname{c} < \lambda \, \operatorname{Lc} \leq e \, \lambda \, \operatorname{Lc} & \operatorname{PLc} = \left(1.07 \text{-} 0.44 \sqrt{\frac{\operatorname{Py}}{\operatorname{Pe}}} \right) \cdot \operatorname{Py} \\ \\ e \, \lambda \, \operatorname{Lc} < \lambda \, \operatorname{Lc} & \operatorname{PLc} = 0.83 \cdot \operatorname{Pe} \\ \\ & \operatorname{Py} = \operatorname{Fy} \cdot \operatorname{Ao} \end{array} \tag{3.2.3}$$

Plu: ラチス材に含まれる接合部の最大引張力

α :接合係数(=1.2)

				1		1	
ラチス材: 丸鋼		T4 C3端	単位				
E:ヤング係数		205000	205000	205000	205000	205000	[N/mm2]
Fy : 降伏強度		258	258	258	258	258	[N/mm2]
Fu : 最大引張耐力		400	400	400	400	400	[N/mm2]
n : ラチス材 片側→1、	両側→2	2	2	2	2	2	
φ : 丸鋼径	$\phi =$	16	16	16	16	16	[mm]
Lx : 構面內単一材座屈長	:さの1/2 Lkxo/2=	30.0	30.0	30.0	30.0	30.0	[cm]
Ly :組立材部材成	H=	60.0	60.0	60.0	60.0	60.0	[cm]
θ:ラチス材がトラス材	軸となす角度	63. 43	63. 43	63. 43	63. 43	63. 43	[度]
Lk : 節点間距離		67	67	67	67	67	[cm]
Ao : 1 本分の断面積		2. 01	2.01	2.01	2. 01	2. 01	[c m²]
ix : 断面二次半径		0.40	0.40	0.40	0.40	0.40	[cm]
λ : ラチス材の細長比		167.7	167. 7	167. 7	167. 7	167. 7	
Py : 降伏軸力	Py=Fy • Ao=	51. 9	51. 9	51.9	51. 9	51.9	[kN]
Pe : 弾性座屈耐力	$Pe=(\pi^2E/\lambda^2)Ao=$	14.5	14. 5	14. 5	14. 5	14. 5	[kN]
	$\lambda_{LC} = \sqrt{Py/Pe} =$	1.89	1.89	1.89	1.89	1.89	
PLc : ラチス材の圧縮耐力	PLc =	12.0	12.0	12.0	12.0	12.0	[kN]
λLcの範囲	PLcの算定式	PLcの値	PLcの値	PLcの値	PLcの値	PLcの値	
λ Lc ≦ 0. 15	Ру	51.9	51. 9	51. 9	51.9	51. 9	[kN]
0. 15< λ Lc≦1. 29	(1. 07-0. 44 λ Lc) Py	12.3	12. 3	12. 3	12.3	12. 3	[kN]
1. 29< λ Lc	0.83Pe	12.0	12.0	12.0	12.0	12.0	[kN]
	Plu=Ao • Fu=	80. 4	80.4	80.4	80. 4	80.4	[kN]
(ラチス材 1 本分)Q	$m=\sin\boldsymbol{\theta}\cdot\min\left[\operatorname{Plc},\frac{\operatorname{Plu}}{\boldsymbol{\alpha}}\right]=$	10.7	10. 7	10. 7	10.7	10. 7	[kN]
	第一項=	10.7	10.7	10.7	10.7	10.7	[kN]
	第二項=		59. 9	59. 9	59.9	59. 9	[kN]
	$2 \times Q_{m}=$	21. 5	21. 5	21. 5	21. 5	21. 5	[kN]